dataprofiler.labelers.character_level_cnn_model module¶
-
dataprofiler.labelers.character_level_cnn_model.build_embd_dictionary(filename)¶ Returns a numpy embedding dictionary from embed file with GloVe-like format
- Parameters
filename (str) – Path to the embed file for loading
-
dataprofiler.labelers.character_level_cnn_model.create_glove_char(n_dims, source_file=None)¶ Embeds GloVe chars embeddings from source file to n_dims principal components in a new file
- Parameters
n_dims (int) – Final number of principal component dims of the embeddings
source_file (str) – Location of original embeddings to factor down
-
class
dataprofiler.labelers.character_level_cnn_model.NoV1ResourceMessageFilter(name='')¶ Bases:
logging.FilterRemoves TF2 warning for using TF1 model which has resources.
Initialize a filter.
Initialize with the name of the logger which, together with its children, will have its events allowed through the filter. If no name is specified, allow every event.
-
filter(record)¶ Determine if the specified record is to be logged.
Returns True if the record should be logged, or False otherwise. If deemed appropriate, the record may be modified in-place.
-
-
class
dataprofiler.labelers.character_level_cnn_model.CharacterLevelCnnModel(label_mapping=None, parameters=None)¶ Bases:
dataprofiler.labelers.base_model.BaseTrainableModelCNN Model Initializer. initialize epoch_id
- Parameters
label_mapping (dict) – maps labels to their encoded integers
parameters (dict) –
Contains all the appropriate parameters for the model. Must contain num_labels. Other possible parameters are:
max_length, max_char_encoding_id, dim_embed, size_fc dropout, size_conv, num_fil, optimizer, default_label
- Returns
None
-
requires_zero_mapping= True¶
-
set_label_mapping(label_mapping)¶ Sets the labels for the model
- Parameters
label_mapping (dict) – label mapping of the model
- Returns
None
-
save_to_disk(dirpath)¶ Saves whole model to disk with weights
- Parameters
dirpath (str) – directory path where you want to save the model to
- Returns
None
-
classmethod
load_from_disk(dirpath)¶ Loads whole model from disk with weights
- Parameters
dirpath (str) – directory path where you want to load the model from
- Returns
None
-
reset_weights()¶ Reset the weights of the model.
- Returns
None
-
fit(train_data, val_data=None, batch_size=32, label_mapping=None, reset_weights=False, verbose=True)¶ Train the current model with the training data and validation data
- Parameters
train_data (Union[list, np.ndarray]) – Training data used to train model
val_data (Union[list, np.ndarray]) – Validation data used to validate the training
batch_size (int) – Used to determine number of samples in each batch
label_mapping (Union[dict, None]) – maps labels to their encoded integers
reset_weights (bool) – Flag to determine whether to reset the weights or not
verbose (bool) – Flag to determine whether to print status or not
- Returns
None
-
predict(data, batch_size=32, show_confidences=False, verbose=True)¶ Run model and get predictions
- Parameters
data (Union[list, numpy.ndarray]) – text input
batch_size (int) – number of samples in the batch of data
show_confidences – whether user wants prediction confidences
verbose (bool) – Flag to determine whether to print status or not
- Returns
char level predictions and confidences
- Return type
dict
-
details()¶ Prints the relevant details of the model (summary, parameters, label mapping)
-
classmethod
get_class(class_name)¶
-
get_parameters(param_list=None)¶ Returns a dict of parameters from the model given a list. :param param_list: list of parameters to retrieve from the model. :type param_list: list :return: dict of parameters
-
classmethod
help()¶ Help function describing alterable parameters.
- Returns
None
-
property
label_mapping¶ mapping of labels to their encoded values
- Type
return
-
property
labels¶ Retrieves the label :return: list of labels
-
property
num_labels¶
-
property
reverse_label_mapping¶ Reversed order of current labels, useful for when needed to extract Labels via indices
- Type
return
-
set_params(**kwargs)¶ Given kwargs, set the parameters if they exist.